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Section Solutions 6

Problem One: Stackity Stack

i.  What is the meaning of the term “logical size?” How does it compare to the term “allocated
size?” What'’s the relationship between the two?

The logical size of the stack is the actual number of elements stored in the stack, whereas the al-
located size is the length of the elems array. The logical length can be any number between O (in-
clusive) and allocatedSize (exclusive) depending on how many pushes and pops have been made.

ii. What is the OurStack() function? Why is each line in that function necessary?

This is the constructor. It’s responsible for setting all the variables in the OurStack class to a rea-
sonable set of defaults. The lines here set up the actual memory where the elements will be
stored, configure the initial logical length (O elements stored), and the initial allocated length
(which is the default initial size given by the constant.)

iii. What is the ~OurStack() function? Why is each line in that function necessary? Why isn’t
there any code in there involving the logicalSize or allocatedSize data members?

This is the destructor. Its job is to deallocate any extra memory or resources that were allocated
by the OurStack class and not otherwise automatically reclaimed. Here, we deallocate the mem-
ory we allocated earlier by using delete[]. We don’t need to do anything to logicalSize or
allocatedSize because there were no dynamic allocations performed to get space for them.
Generally speaking, you only need to explicitly clean up resources that you explicitly allocated.

iv. In the OurStack: :grow() function, one of the lines is delete[] elems, and in the next line
we immediately write elems = newArr;. Why is it safe to do this? Doesn’t deleting elems
make it unusable?

The statement delete[] elems; means “destroy the memory pointed at by elems” rather than
“destroy the elems variable.” As a result, after the first line executes, elems is still a perfectly
safe variable to reassign.

v. The OurStack: :pop() function doesn’t seem to have any error-checking code in it. What hap-
pens if you try to pop off an empty stack?

Notice that OurStack: :pop calls OurStack: : peek, which in turn has its own error-checking.
As a result, trying to pop off an empty stack will trigger the custom error message from the
OurStack: : peek member function.
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vi. What is the significance of placing the OurStack: :grow function in the private section of the
class? What does that mean? Why didn’t we mark it public?

This is a private member function. This is a member function that’s used as a part of the imple-
mentation of the class rather than the interface. Any clients of OurStack can’t access this func-
tion, which is a Good Thing because we don’t want rando’s coming along and increasing our
stack’s capacity unnecessarily.

Right now, our stack doubles its allocated length whenever it runs out of space and needs to grow. The
problem with this setup is that if we push a huge number of elements into our stack and then pop them
all off, we’ll still have a ton of memory used because we never shrink the array when it’s mostly unused.

vii. Explain why it would not be a good idea to cut the array size in half whenever fewer than half
the elements are in use.

Imagine we have a stack with logical size n — 1 and allocated size n. If we perform two pushes,
we’ll double our stack’s allocated size to 2n, which takes time O(n), and increase the logical size
to n+1. If we now do two pops, we’ll drop the logical size down to n-1, which is less than half the
allocated size. If we now shrink the allocated size by half down to n, we’ll have to do O(n) work
transferring elements over, ending with a stack with logical size n — 1 and allocated size n. Over-
all, we’ve done two pushes and two pops, we’re right back where we’ve started, and we’ve done
O(n) work. That’s a lot of work for very little payoff!
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viii. Update the code for OurStack so that whenever the logical length drops below one quarter of
the allocated length, the array is reallocated at half its former length. As an edge case, ensure
that the allocated length is always at least equal to the initial allocated capacity.

There are many ways we can do this. We’re going to do this by replacing the OurStack: :grow function
with a new OurStack::setCapacity function that lets us say what the new allocated size will be.
Here’s the updated class definition:

class OurStack {

public:
OurStack();
~0QurStack();

void push(int value);
int pop(int value);
int peek(int value) const;

int size() const;
bool isEmpty() const;

private:
void setCapacity(int capacity);

int* elems;
int logicalSize;
int allocatedSize;

};
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Here’s the updated functions from the .cpp file:

void OurStack: :push(int value) {
if (logicalSize == allocatedSize) {
setCapacity(allocatedSize * 2);
}

elems[logicalSize] = value;
logicalSize++;

}

int OurStack: :pop() {
int result = peek();
logicalSize--;

if (logicalSize < allocatedSize / 4) {
setCapacity(allocatedSize / 2);
}

return result;

}

void OurStack::setCapacity(int capacity) {
/* Never allocate fewer than kInitialSize cells in our array. */
capacity = max(capacity, kInitialSize);

int* newArr = new int[capacity];
for (int 1 = 0; 1 < size(); i++) {
newArr[i] = elems[1];

delete[] elems;
elems = newArr;
allocatedSize = capacity;
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Problem Two: Hash Functions

int hashFunctioni(const string& str) {
return randomInteger(0, 9); // a value between 0 and 9, inclusive
}

This is not a valid hash function. One of the main requirements for a hash function is that if you hash
the same input multiple times, you always get the same output. However, this hash function doesn’t do
this, since hashing any string multiple times might produce different answers.

At a more intuitive level — imagine you’re using a hash function to distribute items into drawers. The
idea is that you’d compute the hash code for the item, then put the item in the given drawer. The advan-
tage of doing this is that if you want to see whether you have that item, you just need to look in the
drawer it hashes to. But if you get different hash codes back each time, you aren’t guaranteed that you’ll
be able to find the item when you hash it, since you’ll be sent to a random drawer each time!

int hashFunction2(const string& str) {
return 0; // Who cares about str, anyway?
}

This hash code passes the first test of a hash function — if you hash the same input many times, you will
get the same output. However, it absolutely fails the second test — since everything gets mapped to slot
zero, this hash function doesn’t distribute items nicely over the range, and in fact hashes of wildly differ-
ent strings will always end up the same!

Returning to the analogy above — this hash function corresponds to the strategy of “put everything in the
same drawer.” That’ll work, but your drawer will get really full!

int hashFunction3(const string& str) {
return str[0] / 10;
}

There are two problems with this hash function. First, if the input string is empty, it reads off the end of
the string — oops! That’s no good. (It turns out that in C++, reading one step off the end of the string is
technically a well-defined operation, but I'd wager that most C++ programmers don’t know this and at a
bare minimum it’s a weird thing to do.)

But for now, let’s ignore that. This hash function does indeed compute hash codes consistently (if you
hash the same string many times, you’ll always get the same result). However, it does not produce hash
codes that are guaranteed to be in the range from O to 9, since hashing the string "~" would output 12.
Therefore, this is not a legal hash function.

int hashFunction4(const string& str) {
return str[0] % 10;
}

Ignoring the issue raised above about how str[0] might be an out-of-bounds read, this hash function is
deterministic (hashing the same string many times always produces the same output), and the outputs are
always in the range from O to 9, inclusive. In fact, taking an integer and modding it by the number n will
always give you a value in the range from O to n — 1, inclusive.

But is this a good hash function? I'd say no. Good hash functions should have the property that tiny
changes to the inputs result in large changes to the output. Here, taking a string and appending a new
character to it, or changing any character but the first, or deleting any character but the first will not
change the hash code. You’'ll get a huge number of collisions with this hash function.
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int hashFunction5(const string& str) {

}

if (result >=

int result = 0;
for (char ch: str) {

result += ch; // Again, uses the numeric value of ch

/* Numeric values for characters can be positive or negative. */
if (result < 0) {

result = 0;

10) {

result = 9;

return result;

This hash function is deterministic (hashing the same string always produces the same result), and the
way it’s structured guarantees that the range of values produced is always between 0 and 9, inclusive.
However, there are two major problems with this hash function:

1.

The way that this hash function produces values in the range from 0 to 9 is biased toward pro-
ducing the outputs 0 and 9. Specifically, any string made of purely positive-value characters (ba-
sically, most English text) will produce a result greater than 9, which clamps to 9. Similarly, any
string made of purely negative-value characters (whether these exist depends on your OS) will
clamp to 0. So in that sense, the values aren’t nicely-distributed across the whole range, and you’d
expect to get lots of collisions at 0 and 9.

The hash function doesn’t care about the order of the characters in the string. The strings “tar-
ragon” and “arrogant” are anagrams of one another — they’re made of the same characters in a
different order — and so they’ll have the same hash code. The same is true of “senator,” “treason,”
and “atoners.” We’d like it to be the case that if we make small changes to a string (say, swap-
ping the order of the letters) that we get wildly different outputs, but that’s not the case here.

We hope this little foray into the design of hash functions gives you a sense as to why it’s hard to design
good hash functions and why this is something we’re going to leave to the experts.
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Problem Three: Salting and Hashing

Here’s one possible implementation of the function:

HashMap<string, string>
breakWeakPasswords(const HashMap<string, int>& stolenPasswordFile,
const HashSet<string>& knownWeakPasswords,
HashFunction<string> hashFn) {
/* Build a map from hash codes to weak passwords. This takes time O(m). */
HashMap<int, string> weakHashes;
for (string password: knownWeakPasswords) {
weakHashes[hashFn(password)] = password;
}

/* A user has a bad password if the hash is known. We can very quickly check
* this because hash table lookups are so fast. This takes time 0(n).
*
/
HashMap<string, string> result;
for (string username: stolenPasswordFile) {
int hashedPassword = stolenPasswordFile[username];
if (weakHashes.containsKey(hashedPassword)) {
result[username] = weakHashes[hashedPassword];
}

}

return result;

}

This code takes time O(m + n), which means that it’s a very efficient way to find everyone with a weak
password. Think about how this function scales and what has to happen for its output to double.

The above attack works because we can precompute the hashes of common passwords fairly quickly. If
we add in a per-user salt, we can’t do this any more. For example, suppose someone has the very weak
password password. If they have a random salt, it’s as though their password really was some long ran-
dom string of characters followed by password, and the hash code of that string is likely to be com-
pletely different than that of the hash code for password itself. We therefore can’t precompute the hash
codes of all the weak passwords and then see if anyone has those hash codes, because the hash codes
stored per person will be quite different from the hash codes of the raw passwords.

We could still go one person at a time and try hashing all the weak passwords along with the salt to see if
that matches the stored hash for the person, but that’s going to be much slower than before. We have to
now do O(m) work for each of the O(n) users for a total runtime of O(mn). If m is, say, 100,000 and n
is, say, 100,000,000, it’s going to take us a long time to find everyone with weak passwords, long enough
for the company to announce that there’s been a breach and urge everyone to change passwords.
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